Multiferroic Phases and Transitions in Ferroelectric Lead Titanate Nanodots
نویسندگان
چکیده
منابع مشابه
Multiferroic Phases and Transitions in Ferroelectric Lead Titanate Nanodots
Discovery of novel phases and their associated transitions in low-dimensional nanoscale systems is of central interest as the origin of emergent phenomena and new device paradigms. Although typical ferroelectrics such as PbTiO3 exhibit diverse phase transition sequences, the conventional incompatible mechanisms of ferroelectricity and magnetism keep them as simply nonmagnetic phases, despite th...
متن کاملFerroelectric Lead Zirconate Titanate and Barium Titanate Nanotubes
Wetting of the pore walls of porous templates is a simple and convenient method to prepare nanotubes. Ferroelectric lead zirconate titanate and barium titanate nanotubes were fabricated by wetting of porous silicon templates of polymeric precursors. The ferroand piezoelectric properties of an individual ferroelectric either of a PZT or a BaTiO3 nanotube were electrically characterized by measur...
متن کاملMultiferroic domain dynamics in strained strontium titanate.
Multiferroicity can be induced in strontium titanate by applying biaxial strain. Using optical second harmonic generation, we report a transition from 4/mmm to the ferroelectric mm2 phase, followed by a transition to a ferroelastic-ferroelectric mm2 phase in a strontium titanate thin film. Piezoelectric force microscopy is used to study ferroelectric domain switching. Second harmonic generation...
متن کاملMultidomain switching in the ferroelectric nanodots
Controlling the polarization switching in the ferroelectric nanocrystals, nanowires and nanodots has an inherent specificity related to the emergence of depolarization field that is associated with the spontaneous polarization. This field splits the finite-size ferroelectric sample into polarization domains. Here, based on 3D numerical simulations, we study the formation of 180◦ polarization do...
متن کاملLarge Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics
Both relaxor ferroelectric and antiferroelectric materials can individually demonstrate large electrocaloric effects (ECE). However, in order to further enhance the ECE it is crucial to find a material system, which can exhibit simultaneously both relaxor ferroelectric and antiferroelectric properties, or easily convert from one into another in terms of the compositional tailoring. Here we repo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2017
ISSN: 2045-2322
DOI: 10.1038/srep45373